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ABSTRACT
Background: The Western dietary pattern (WD) is positively
associated with risk of coronary artery disease (CAD) and cancer,
whereas the Prudent dietary pattern (PD) may be protective. Foods
may influence metabolite concentrations as well as oxidative stress
and lipid dysregulation, biological mechanisms associated with CAD
and cancer.
Objective: The aim was to assess the association of 2 derived
dietary pattern scores with serum metabolites and identify metabolic
pathways associated with the metabolites.
Methods: We evaluated the cross-sectional association between
each dietary pattern (WD, PD) and metabolites in 2199 Women’s
Health Initiative (WHI) participants. With FFQ and factor anal-
ysis, we determined 2 dietary patterns consistent with WD and
PD. Metabolites were measured with LC–tandem MS. Metabo-
lite discovery among 904 WHI Observational Study (WHI-OS)
participants was replicated among 1295 WHI Hormone Therapy
Trial (WHI-HT) participants. We analyzed each of 495 metabo-
lites with each dietary score (WD, PD) in linear regression
models.
Results: The PD included higher vegetables and fruit intake
compared with the WD with higher saturated fat and meat intake.
Independent of energy intake, BMI, physical activity, and other
confounding variables, 45 overlapping metabolites were identified
(WHI-OS) and replicated (WHI-HT) with an opposite direction of
associations for the WD compared with the PD [false discovery
rate (FDR) P < 0.05]. In metabolite set enrichment analyses,
phosphatidylethanolamine (PE) plasmalogens were positively en-
riched for association with WD [normalized enrichment score
(NES) = 2.01, P = 0.001, FDR P = 0.005], and cholesteryl esters
(NES = −1.77, P = 0.005, FDR P = 0.02), and phosphatidylcholines
(NES = −1.72, P = 0.01, P = 0.03) were negatively enriched
for WD. PE plasmalogens were positively correlated with saturated

fat and red meat. Phosphatidylcholines and cholesteryl esters were
positively correlated with fatty fish.
Conclusions: Distinct metabolite signatures associated with Western
and Prudent dietary patterns highlight the positive association of
mitochondrial oxidative stress and lipid dysregulation with a WD and
the inverse association with a PD. Am J Clin Nutr 2020;112:268–
283.

Keywords: Western diet, Prudent diet, lipidomics, metabolomics,
plasmalogens, women

Introduction
The Western dietary pattern (WD) is positively associated with

the risk of coronary artery disease (CAD) and cancer, whereas the
Prudent dietary pattern (PD) may be protective. Epidemiologic
studies support the association between a WD, high in saturated
fat and added sugars and low in fruits and vegetables, and
increased CAD and cancer, diseases with underlying oxidative
stress, insulin resistance, and lipid dysregulation (1–3). Alter-
natively, a healthy diet rich in fruits and vegetables has been
associated with lower risk of all-cause death and CAD events
in several large general-population cohorts (4, 5). Similarly, a
comparative risk assessment of the global burden of disease
identified dietary patterns low in fruits and vegetables as 1 of the 5
leading risk factors for global disease burden and total mortality
worldwide (6). The examination of dietary patterns, instead of
individual foods, captures interactions between specific foods as
well as the combined influence of several dietary components on
disease risk (7).

Dietary patterns have a complex impact on metabolism,
resulting in signatures of metabolites in circulation (8). Plasma
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metabolite concentrations have been shown to correlate with
self-reported intake of certain nutrients (9). The WHO Global
Strategy on Diet, Physical Activity, and Health focuses on
improving diet quality by emphasizing dietary patterns that
decrease added sugar and increase intake of whole-grain cereals,
fruits, and vegetables (10). Identifying metabolites associated
with deleterious and healthy dietary patterns may provide
insights into the biological mechanisms that link dietary patterns
with CAD and cancer and guide population-based policies for
improving dietary patterns to reduce disease burden. We sought
to characterize metabolites associated with WD or PD. Few
studies (11–14) have examined metabolites measured using MS
or NMR methods and their associations with a WD (11) or
PD. We hypothesized that dietary intake patterns are reflected
in unique metabolite profiles linked to underlying metabolic
pathways associated with oxidative stress, insulin resistance, and
lipid dysregulation.

Methods
Our analyses utilized data from the Women’s Health

Initiative (WHI) nested case-control study of CAD with
2306 participants from the WHI–Observational Study (WHI-
OS) and WHI–Hormone Therapy Trial (WHI-HT), as previ-
ously described (15) (Supplemental Figure 1, Supplemental
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Table 1). Participants from WHI-OS and WHI-HT were
frequency matched on 5-y age, race/ethnicity, hysterectomy
status, and 2-y enrollment window. This study was approved by
Partners Human Research Committee, which is the institutional
review board of Brigham and Women’s Hospital. All participants
provided written informed consent.

Discovery population

The metabolite pattern discovery cohort was drawn from the
WHI-OS, consisting of 93,676 postmenopausal women ineligible
or unwilling to participate in the related hormone trials, enrolled
between 1994 and 1998 in the United States. A total of 944
women in the WHI-OS had fasting metabolite profiles measured
(Supplemental Figure 1).

Replication population

The WHI-HT randomly assigned 16,608 postmenopausal
women with an intact uterus to estrogen plus progesterone or
placebo and 10,739 women with prior hysterectomy to estrogen
or placebo. A total of 1362 individuals had available metabolite
profiles and included frequency-matched controls selected from
the 2 placebo arms. All samples were collected prior to hormone
therapy randomization.

In our analyses, we excluded women with implausible total
energy intake values (≤600 kcal/d or ≥5000 kcal/d; n = 86),
very low or very high BMI values (in kg/m2; <15 or >50;
n = 11), and individuals with missing dietary data (n = 6).
After exclusions, the analytic dataset included 2199 women
(Supplemental Figure 1): 904 in the WHI-OS (discovery dataset)
(Supplemental Table 2) and 1295 in the WHI-HT (replication
dataset) (Supplemental Table 3). This study uses blood drawn
at baseline and all participants were free of CAD at baseline. All
participants in this analysis were asked to fast and underwent a
morning blood collection.

Metabolomics

Plasma samples were collected in EDTA-coated tubes. Spec-
imens were stored in a −70◦C freezer within 2 h of collection
or stored at −20◦C for ≤2 d and mailed on dry ice and stored
at −70◦C until processing. Metabolomic measurements were
performed at the Broad Institute (Boston, MA) with 4 LC–tandem
MS methods described in detail elsewhere (15), yielding 509
metabolites (Supplemental Table 4). For each method, pooled
plasma reference samples were included every 20 samples.
Results were standardized using the ratio of the value of the
sample to the value of the nearest pooled reference multiplied
by the median of all reference values for the metabolite.

Lipids data (polar and nonpolar lipids) were measured as
described in Rhee et al. (16). Positive ionization mode data
[acyl carnitines (ACs), amino acids, peptides, derivatives, and
others] were measured as described in Wang et al. (17),
and negative ionization mode data (sugars, sugar phosphates,
purine, pyrimidines, and others) were assayed as described in
Bajad et al. (18). With the use of MultiQuant 1.2 software
(AB SCIEX), metabolites were identified and quantified (19).
All signals were inspected to ensure quality and integration,
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and a signal-to-noise ratio <10 was considered unquantifiable
(16–18). For each method, metabolite identities were confirmed
using authentic reference standards or reference samples. CVs
were calculated using pooled plasma samples from the first
800 WHI-OS participants (15). After excluding metabolites
that failed unadjusted linear model (metabolite as outcome and
dietary score as exposure) convergence (14 metabolites failed
unadjusted linear models for convergence due to missing data:
missing data ranged between 24% and 99%; missing data was
not imputed), 495 known metabolites were retained for analyses.
In the pilot testing of the metabolomics platform, 92% of
metabolites had acceptable assay reproducibility (CV <20%) and
almost 90% of metabolites were stable over 1 to 2 y [Spearman
correlation or intraclass correlation coefficient (ICC) ≥0.4]. x:y
notation was used where x denotes the number of carbons in the
side chain and y the number of double bonds.

Statistical analysis

Derived dietary pattern scores.

The WHI dietary assessment and food grouping have been
previously reported (20, 21). Briefly, dietary intakes were
collected from a validated and standardized semiquantitative,
self-administered, 122-item FFQ that estimates average daily
nutrient intake over the previous 3-mo period (20, 21). The
WHI FFQ has produced results comparable to those from
four 24-h dietary recall interviews and 4 d of food diaries
recorded within the WHI study population (20, 21). Vitamin and
mineral supplement use was assessed with a simplified inventory
procedure (20, 21).

Baseline WHI FFQ data were used to create MyPyramid
Equivalents Database (MPED) food groups based on MyPyramid
Equivalents Database version 2.0 (MPEDS 2.0) (22). We gener-
ated dietary patterns by factor analysis (principal components)
on the basis of 26 MPED food groups (Supplemental Table 5)
by means of the orthogonal rotation procedure (23). This yielded
uncorrelated or independent factors (Supplemental Table 6).
The factor scores were standardized, resulting in a mean of 0
and SD of 1. We determined the number of factors to retain by
eigenvalue (>1) (Supplemental Table 7), Scree plot test, and
factor interpretability. This factor analysis process resulted in the
selection of 2 patterns that we identify as Western (rich in meat,
saturated fats, and refined carbohydrates) and “Prudent” (rich in
fruits and vegetables), consistent with dietary patterns described
by other studies (24–26). The factor score for each pattern
was calculated as a linear combination of the intakes of food
groups weighted by food-group–specific factor loadings, and
each participant received a factor score for each identified pattern.
Factor analysis was conducted with SAS PROC FACTOR (SAS
Institute, Inc.). Food groups with a standardized factor loading
≥0.1 or ≤−0.1 were reported as comprising either a WD or
a PD.

Metabolite discovery and replication methods.

All metabolites were scaled and log-normalized, and missing
values below the limit of detection were assigned to half the
lowest observed value. We assessed differences in baseline
characteristics across quartiles of WD and PD with the use

FIGURE 1 Analysis flowchart. FDR, false discovery rate; PD, Prudent
dietary pattern; WD, Western dietary pattern; WHI-HT, Women’s Health
Initiative Hormone Therapy Trial; WHI-OS, Women’s Health Initiative
Observational Study.

of Kruskal-Wallis tests for continuous variables and chi-square
for categorical variables. We calculated the partial Spearman
correlation coefficient between each validated metabolite and
each food item with an eigenvalue >0.1 in the standardized
Eigen factors. The analysis plan for the Discovery and Validation
data sets is outlined in Figure 1. The unadjusted model
included the metabolite as the outcome and the dietary pattern
(WD or PD) as the exposure. The adjusted model included
the set of covariates that determined the frequency matching
of CAD cases to controls [age, race/ethnicity (white, black,
or other), hysterectomy status, and enrollment window], LC–
tandem MS batch, case status (CAD case or control), plus
traditional factors associated with dietary patterns: BMI (kg/m2)
as a continuous variable, smoking status (current compared
with never/past), caloric intake (kilocalories per day), exercise
(metabolic equivalent-hours/week) as a continuous variable,
education (less than college or at least some college), and
income (<$34,999/y compared with ≥$34,999/y; this income
categorization was chosen because it reflected an approximation
of the median income category), and medication use (aspirin,
statins, antidiabetics, and antihypertensives).

Discovery.

Metabolite associations were evaluated separately with respect
to each dietary score (PD or WD). In the WHI-OS discovery
data set (n = 904), single metabolite linear regression models
examined the association of each metabolite (outcome) with
respect to each standardized dietary score (WD, PD), which was
considered the primary exposure of interest, while adjusting for
potential confounders. As both metabolite concentrations and
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dietary scores were standardized to unit variance, the model-
based regression coefficients associated with each exposure (WD,
PD) reflect the average change in metabolite abundance in SD
units corresponding to a 1-SD increase in dietary score.

Adjustments for multiple comparisons were based on a
2-stage step-up procedure to control the overall false dis-
covery rate (FDR) at 5% (27). In particular, this approach
allows for dependencies between the metabolites and is im-
plemented using the “TSBH” option of the mt.rawp2adjp
function in the multtest R package (R Foundation for Statistical
Computing).

Statistically significant metabolite associations satisfied an
FDR P value <0.05 in the adjusted model. Significant metabo-
lites from the Discovery analyses were carried forward to the
WHI-HT replication data set (Figure 1).

Replication.

Replication of metabolite associations with WD or PD was
conducted in the independent replication WHI-HT data set
(n = 1295). Metabolite associations were evaluated separately
with respect to each dietary score as described in the Discovery
stage. Metabolite associations were considered to have replicated
if the FDR-adjusted P value corresponding to the linear
regression coefficient associated with dietary score (WD or PD)
was <0.05 in the adjusted model.

We examined the correlation structure of the subset of
metabolites that were associated with both WD and PD and
replicated at a threshold of FDR P < 0.01. For visualizing the
directions of metabolite associations with each dietary score,
metabolites were grouped according to metabolite class and
direction of association with WD (WD+ denotes metabolites
that increase with increasing WD; WD– denotes metabolites
that decrease with increasing WD). Metabolite classes
included fatty acids (FAs), sphingomyelins, triacylglycerols
(TAGs), phosphatidylethanolamine (PE) plasmalogens,
diacylglycerols, ACs, phosphatidylcholine (PC) plasmalogens,
amino acids, ceramides, PCs, lysophosphatidylethanolamines,
PEs, purines and pyrimidines, cholesteryl esters (CEs),
lysophosphatidylcholines (LPCs), and phosphatidylserines
(Figure 2).

Metabolite set enrichment analysis.

The 117 metabolites that were discovered as associated
with WD or PD (FDR P < 0.05) in fully adjusted models
were included in metabolite set enrichment analyses (MSEA).
Metabolites were grouped into metabolite sets by mapping
to 26 unique metabolite classes. Of these, 11 metabolite
classes comprised ≥4 metabolites each and were included in
the MSEA analyses. For each dietary score (WD and PD),
metabolites were ranked based on the test statistics from the
fully adjusted models in the WHI-HT replication dataset—
test statistics were calculated as the ratio of the regression
coefficient corresponding to the dietary score to its SE. For
each metabolite, a permutation P value corresponding to the
MSEA enrichment score was calculated based on 10,000 per-
mutations and adjusted for multiple testing using the Benjamini
and Hochberg FDR control procedure. MSEA analyses were

conducted using the fgsea R package (R Foundation for Statistical
Computing).

Food and metabolite associations.

We analyzed food groups associated with the replicated
metabolites by Spearman rank correlation. We then analyzed
the selected Western and Prudent food groups associated
with the metabolites. We created a heatmap to display the
Spearman rank correlation relations between foods and replicated
metabolites. Heatmap profiling was based on z-score scaled data
of metabolites. Partial Spearman rank correlation (P < 0.01)
adjusted for age, BMI, batch, ethnicity, enrollment time, energy
intake, case control status, smoking (current compared with
past/never), income (<$34,999 compared with ≥$34,999), ed-
ucation, medication use at baseline (aspirin, statin, hypertension
medications, and diabetes medications), and exercise. R-Studio
version 3.5 was used for all analyses.

Sensitivity analyses.

BMI subgroup analysis was performed to identify nonho-
mogeneity of relations between diet score and metabolite for
different levels of BMI. We performed BMI stratified analyses
(BMI <25 and BMI ≥25) for the 86 validated metabolites for WD
and PD in the entire cohort (n = 2199) using the fully adjusted
model; we adjusted for continuous BMI within BMI strata. We
performed a sensitivity analysis adjusting for multivitamin use.
We performed a sensitivity analysis for exposure WD or PD
and outcome as each single metabolite in the discovery and
replication groups of subgroups of participants with and without
the development of CAD (all participants were free of CAD at
baseline).

Results

Descriptive characteristics and dietary patterns

The WD was characterized by higher intakes of saturated
fat, refined grains, added-sugar products, and animal products
(cheese and meat), whereas the PD was characterized by higher
intakes of vegetables and fruits (Supplemental Table 6).

Table 1 shows the baseline characteristics of the 904 women in
the WHI-OS discovery group (451 CAD cases and 453 controls)
and the 1295 women in the WHI-HT validation group (637 cases
and 658 controls) by each dietary pattern’s lowest and highest
quartiles. The mean age was similar in both groups (67–68 y).
Women reporting the highest adherence to a WD (WD quartile
4) had higher BMI, higher C-reactive protein (CRP), and lower
physical activity levels compared with those reporting lower
adherence to a WD (WD quartile 1). Women with the highest
adherence to a PD (PD quartile 4) had lower BMI, lower CRP,
and higher physical activity levels compared with reporting lower
adherence to a PD (PD quartile 1). The proportion for blacks
decreased across WD quartiles (13.9 to 12.8).

In the Discovery data set, we analyzed cross-sectional
associations of 495 metabolites with the WD and PD scores in
unadjusted and fully adjusted models, incorporating age, race,
hysterectomy status, case/control status, batch, BMI, smoking,
energy intake, education, income, and medication use (statins,

D
ow

nloaded from
 https://academ

ic.oup.com
/ajcn/article/112/2/268/5855512 by Biblioteca Virtuale Per La Salute - Piem

onte user on 19 April 2021



272 Chandler et al.

FIGURE 2 Average regression coefficients corresponding to the associations of WD and PD score within metabolite sets. Linear models were adjusted for
age, BMI, batch, ethnicity, enrollment time, energy intake, exercise, case-control status, smoking (current vs. past/never), income (<$34,999 vs. ≥$34,999),
education, and medication use at baseline (aspirin, statin, hypertension medications, diabetes medications) and estimated in the WHI-HT replication dataset.
Metabolites were grouped according to metabolite class and direction of association with WD. Metabolite classes included FAs, SMs, TAGs, PEp, DAGs, ACs,
PCp, AAs, CERs, PCs, LPEs, PEs, PUP, CEs, LPCs, and PS. AA, amino acid; AC, acyl carnitine; CE, cholesteryl ester; CER, ceramide; DAG, diacylglycerols;
FA, fatty acids; LPC, lysophosphatidylcholines; LPE, lysophosphatidylethanolamines; PC, phosphatidylcholines; PCp, phosphatidylcholine plasmalogens; PD,
Prudent dietary pattern; PE, phosphatidylethanolamines; PEp, phosphatidylethanolamine plasmalogens; PS, phosphatidylserines; PUP, purines and pyrimidines;
SM, sphingomyelins; TAG, triacylglycerols; WD, Western dietary pattern; WD+, denotes metabolites that increase with WD; WD–, metabolites that decrease
with WD.

blood pressure–lowering medications, and diabetes medications)
(Figure 1). Metabolites discovered in unadjusted and adjusted
models for WD showed a predominance of plasmalogens with
FDR P < 0.05 (Supplemental Tables 8 and 9). Metabolites
discovered in unadjusted and adjusted models for PD showed
a predominance of PCs, CEs, and TAGs with FDR P < 0.05
(Supplemental Tables 10 and 11). In confounder-adjusted
models in the WHI-OS, there were 57 metabolites selected for
association with WD (FDR P < 0.05) (Supplemental Table 9)
and 101 metabolites selected for association with PD (FDR
P < 0.05) (Supplemental Table 11), yielding a total of 117
unique metabolites. Unadjusted and adjusted models in the
WHI-HT replication cohort for WD showed a predominance of
plasmalogens with FDR P < 0.05 (Supplemental Tables 12 and
13) and, for PD, a predominance of phosphatidylcholines, CEs,

and TAGs with FDR P < 0.05 (Supplemental Tables 14 and 15).
Of these, 58 metabolites were validated in fully adjusted models
for WD (FDR P < 0.05) (Supplemental Table 13) and 74 for
PD (FDR P < 0.05) (Supplemental Table 15) in the WHI-HT
replication cohort. Overall, we validated 86 unique metabolites
associated with dietary patterns that were both discovered in the
WHI-OS and replicated in the independent WHI-HT data set
(FDR P < 0.05).

To visualize the directions of association of metabolites with
each dietary score, the subset of 86 replicated metabolites
were grouped by metabolite class and direction of association
with WD (WD+ or WD–) in adjusted models in the WHI-
HT. In Figure 2, a bar plot shows the average regression
coefficient associated with each dietary score (reflecting change
in metabolite abundance per 1-SD increase in WD or PD)
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TABLE 1 Baseline characteristics of the 2199 WHI participants in observation and trial cohorts1

Western Prudent

Q1 Q4 P Q1 Q4 P

n 495 561 513 566
Age, y 69 ± 7 65 ± 7 <0.001 66 ± 7 68 ± 7 <0.001
WHI-HT 241 ± 48.7 374 ± 66.7 <0.001 326 ± 63.5 292 ± 51.6 <0.001
CAD cases, n (%) 250 (50.5) 295 (52.6) 0.54 286 (55.8) 262 (46.3) 0.002
Current cigarette smoking, n (%) 40 (8.2) 75 (13.5) 0.008 110 (21.9) 40 (7.1) <0.001
Exercise, MET-h/wk 12.5 ± 12.5 9.3 ± 11.9 <0.001 6.8 ± 9.1 15.0 ± 14.0 <0.001
BMI, kg/m2 27.3 ± 5.3 30.3 ± 6.0 <0.001 29.6 ± 6.1 28.0 ± 5.7 <0.001
Diabetes, n (%) 61 (12.3) 86 (15.4) 0.18 65 (12.7) 75 (13.3) 0.85
Hypertension, n (%) 219 (44.4) 277 (49.7) 0.097 226 (44.3) 239 (42.6) 0.62
Hysterectomy, n (%) 238 (48.1) 269 (48.0) Matched 269 (52.4) 253 (44.7) 0.01
Aspirin use, n (%) 133 (26.9) 147 (26.2) 0.86 120 (23.4) 159 (28.1) 0.09
Statin use, n (%) 77 (15.6) 43 (7.7) <0.001 50 (9.7) 71 (12.5) 0.18
Hypertension med use, n (%) 142 (28.7) 174 (31.0) 0.45 138 (26.9) 150 (26.5) 0.94
Race/ethnicity, n (%) 0.02 <0.001

White (not of Hispanic origin) 375 (75.8) 457 (81.5) 371 (72.3) 480 (84.8)
Black 69 (13.9) 72 (12.8) 93 (18.1) 49 (8.7)
Not 1 of above 51 (10.3) 32 (5.7) 49 (9.6) 37 (6.5)

Education ≥ college, n (%) 294 (60.0) 297 (53.2) 0.03 211 (41.5) 403 (71.8) <0.001
Income ≥$34,999, n (%) 194 (41.1) 207 (38.0) 0.34 149 (30.1) 252 (45.9) <0.001
Total cholesterol, mg/L 234 ± 44 235 ± 47 0.69 235 ± 44 233 ± 43 0.48
HDL cholesterol, mg/L 52.5 ± 15.5 48.4 ± 12.7 <0.001 49.2 ± 14.8 51.5 ± 14.2 0.007
Triglycerides, mg/L 154.3 ± 92.9 166.3 ± 94.9 0.09 160.3 ± 92.8 151.5 ± 84.5 0.18
LDL cholesterol, mg/L 149.9 ± 39.4 153.0 ± 39.0 0.3 153.8 ± 39.1 150.6 ± 40.0 0.28
C-reactive protein, mg/L 4.1 ± 5.3 5.6 ± 7.2 <0.001 5.8 ± 8.1 4.6 ± 6.3 0.01

1Values are means ± SDs unless otherwise noted. Percentage may not always add to 100%. Kruskal-Wallis tests for continuous variables and chi-square
test for categorical variables were used. “%” represents the individuals who have the value reported. CAD, coronary artery disease; MET-h, metabolic
equivalent task hours; Q, quartile; WHI, Women’s Health Initiative; WHI-HT, Women’s Health Initiative Hormone Therapy Trial.

within each metabolite group. The metabolites segregated into
2 nonoverlapping groups of metabolites with either positive
WD and negative PD regression coefficients or positive PD and
negative WD regression coefficients (Figure 2). The metabolite
with the largest magnitude of the regression coefficient associated
with WD in adjusted models in the WHI-HT was a plasmalogen,
C36:4 PE plasmalogen, with βWD = 0.35 and FDR P = 0.000191
(Supplemental Table 13), with a corresponding association with
PD of βPD = −0.09 and FDR P = 0.010847 (Supplemental
Table 15). The other dominant WD metabolites included 8 PC
plasmalogens and 4 PE plasmalogens (Supplemental Table 13).
The metabolite with the largest magnitude of the regression
coefficient associated with PD in adjusted models in the WHI-HT
was an LPC, C22:6 LPC, with βPD = 0.18 and FDR P = 7.02
× 10−7 (Supplemental Table 15), with a corresponding βWD =
−0.38 and FDR P = 2.21 × 10−5 (Supplemental Table 13). The
other dominant PD metabolites included 14 TAGs, all of which
had ≥6 double bonds (Supplemental Table 15). In addition, 7
PCs had positive βPD (Supplemental Table 15) and no PCs were
positively associated with WD (Figure 2).

The top 20 WD and PD metabolites are shown in Tables 2
and 3 based on FDR P value. Forty-five of the 86 replicated
metabolites were associated with both PD and WD and had
opposite directions of associations with WD compared with
PD (Table 4). The WD was positively associated with short-
chain ACs, plasmalogens, and a ceramide (Tables 2 and 4,
Supplemental Table 13) and PD was inversely associated with
these metabolites (Table 4, Supplemental Table 15). The PD

was positively associated with long-chain FAs, PCs, and CEs
(Tables 3 and 4, Supplemental Table 15), whereas the WD was
inversely associated with these metabolites (Tables 2 and 4,
Supplemental Table 13). Of the 45 overlapping WD and PD
metabolites, the two FAs, docosatrienoic acid and eicosanedioate,
and a glycerophosphoethanolamine-C36:4 PE plasmalogen were
among the top metabolites positively associated with WD and
the glycerophosphocholines C22:6 LPC and C38:6 PC, and
steroid ester C20:5 CE with PD (Table 4). The correlation
heatmap for 45 overlapping metabolites for WD and PD
demonstrates the metabolically distinct metabolite clusters, such
as plasmalogens compared with TAGs, CEs, and PCs (Figure
3). Furthermore, the correlation heatmap shows 2 clusters of
highly correlated plasmalogens (1 cluster of PE plasmalogens
and 1 cluster of PC plasmalogens), and 2 other plasmalogens
(C38:4 PC plasmalogen-B and C32:1 PC plasmalogen-A) that
are poorly correlated. In MSEA, ACs were negatively enriched
for association with PD [normalized enrichment score (NES) =
−2.97, P = 0.0005, FDR P = 0.006] and TAGs were positively
enriched for association with PD (NES = 1.94, P = 0.001,
FDR P = 0.006). ACs were positively enriched for association
with WD (NES = 2.56, P = 0.003, FDR P = 0.003). PE
plasmalogens were also positively enriched for association with
WD (NES = 2.01, P = 0.001, FDR P = 0.005). CEs were
negatively enriched for association with WD (NES = −1.77,
P = 0.005, FDR P = 0.02) as were PCs (NES = −1.72, P = 0.01,
FDR P = 0.03) (Supplemental Figure 2). All plasmalogens
were PE plasmalogens that were associated with WD in the
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TABLE 3 Top 20 validated PD pattern metabolites in fully adjusted models in the WHI-HT1

βWD (SE) Regression
coefficient, βPD

continuous 1 SD (SE)

P

Metabolite HMDB ID Quartile 1 Quartile 2 Quartile 3 Quartile 4 Continuous FDR continuous

C22:6 LPC HMDB10404 Reference 0.19 (0.08) 0.35 (0.08) 0.50 (0.08) 0.18 (0.03) 7.88 × 10−9 7.02 × 10−7

C38:6 PC HMDB07991 Reference 0.17 (0.08) 0.33 (0.08) 0.46 (0.08) 0.18 (0.03) 1.20 × 10−8 7.02 × 10−7

C20:5 CE HMDB06731 Reference 0.13 (0.08) 0.26 (0.08) 0.40 (0.08) 0.17 (0.03) 2.53 × 10−8 9.85 × 10−7

C58:8 TAG HMDB05413 Reference 0.14 (0.08) 0.16 (0.08) 0.38 (0.08) 0.17 (0.03) 8.48 × 10−8 1.98 × 10−6

Uridine Uridine Reference 0.13 (0.08) 0.25 (0.08) 0.42 (0.09) 0.17 (0.03) 8.42 × 10−8 1.98 × 10−6

C60:12 TAG HMDB05478 Reference 0.12 (0.08) 0.14 (0.08) 0.39 (0.08) 0.16 (0.03) 1.13 × 10−7 2.20 × 10−6

C22:6 CE HMDB06733 Reference 0.16 (0.07) 0.26 (0.08) 0.40 (0.08) 0.15 (0.03) 1.53 × 10−7 2.24 × 10−6

C58:9 TAG HMDB05463 Reference 0.15 (0.08) 0.18 (0.08) 0.39 (0.08) 0.16 (0.03) 1.39 × 10−7 2.24 × 10−6

C40:10 PC HMDB08511 Reference 0.19 (0.08) 0.30 (0.08) 0.43 (0.08) 0.16 (0.03) 2.05 × 10−7 2.66 × 10−6

Eicosapentaenoate HMDB01999 Reference 0.15 (0.08) 0.25 (0.08) 0.39 (0.08) 0.16 (0.03) 2.98 × 10−7 3.19 × 10−6

C58:11 TAG HMDB10531 Reference 0.15 (0.08) 0.14 (0.08) 0.38 (0.08) 0.16 (0.03) 3.00 × 10−7 3.19 × 10−6

Uracil Uracil Reference 0.08 (0.08) 0.20 (0.08) 0.35 (0.09) 0.16 (0.03) 3.34 × 10−7 3.26 × 10−6

C58:10 TAG HMDB05476 Reference 0.16 (0.08) 0.16 (0.08) 0.37 (0.08) 0.15 (0.03) 7.31 × 10−7 6.58 × 10−6

C22:6 LPE-B HMDB11526 Reference 0.12 (0.08) 0.30 (0.08) 0.42 (0.08) 0.15 (0.03) 7.95 × 10−7 6.65 × 10−6

Indole-3-propionate Indole-3-propionate Reference 0.07 (0.08) 0.18 (0.08) 0.42 (0.08) 0.15 (0.03) 1.05 × 10−6 8.22 × 10−6

C40:6 PC-B HMDB08057 Reference 0.09 (0.08) 0.29 (0.08) 0.38 (0.08) 0.15 (0.03) 1.25 × 10−6 9.16 × 10−6

C56:10 TAG HMDB10513 Reference 0.17 (0.08) 0.20 (0.08) 0.37 (0.08) 0.15 (0.03) 2.79 × 10−6 1.92 × 10−5

DHA DHA Reference 0.15 (0.08) 0.28 (0.08) 0.38 (0.08) 0.14 (0.03) 4.77 × 10−6 2.94 × 10−5

C56:9 TAG HMDB05448 Reference 0.14 (0.08) 0.16 (0.08) 0.35 (0.09) 0.14 (0.03) 4.76 × 10−6 2.94 × 10−5

C56:8 TAG HMDB05392 Reference 0.13 (0.08) 0.18 (0.08) 0.35 (0.09) 0.14 (0.03) 7.55 × 10−6 4.42 × 10−5

1Single metabolite linear regression models for each metabolite (outcome) with respect to primary exposure of interest, while adjusting for age, BMI, batch, ethnicity,
enrollment time, energy intake, exercise, case-control status, smoking (current vs. past/never), income (<$34,999 vs. ≥$34,999), education, and medication use at baseline (aspirin,
statin, hypertension medications, diabetes medications). CE, cholesteryl ester; FDR, false discovery rate; HMDB, Human Metabolome Database; LPC, lysophosphatidylcholine;
LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PD, Prudent dietary pattern; TAG, triacylglycerol; WHI-HT, Women’s Health Initiative Hormone Therapy Trial.

MSEA (Supplemental Table 16). These same PE plasmalogens
were associated with red meat and saturated fat (Supplemental
Table 17).

The most highly correlated WD food group and PD food
group associated with each metabolite are presented in Table
5. Saturated fat was the WD food group with the strongest
metabolite:food partial correlation: C38:4 PC plasmalogen-
B, a glycerophosphocholine (partial Spearman r = 0.21,
P = 3.41 × 1020). Fatty fish was the PD food group with the
strongest metabolite:food correlation: C38:6 PC, a PC (partial
Spearman r = 0.34, P = 2.68 × 1052). The glycerophospholipid
pathway was the dominant metabolite pathway in Table 5.
The other food group and metabolite partial correlation results
are shown in Supplemental Table 17 and Supplemental
Table 18.

Figures 4 and 5 show the hierarchical clustering heatmap
of 45 replicated and overlapping WD and PD metabolites
with WD food groups and PD food groups, respectively. Nine
Western food groups (white potatoes, refined grains, cheese–
natural and processed, added sugar, red meat, saturated fat, oil,
processed meat, and eggs) had an absolute value of correlation
coefficient >0.1 (Figure 4). Figure 4 shows the clustering of
fatty foods—red meat, saturated fat, and non–saturated fat—
with the plasmalogens. Eight Prudent food groups (fatty fish;
orange vegetables; citrus fruits, melons, and berries; other fruits;
dark-green vegetables; starchy vegetables; tomatoes; and other
vegetables) had an absolute value of correlation coefficient >0.1
(Figure 5). Figure 5 shows the clustering of omega-3 FAs and
PC metabolites with fatty fish; other fruit (e.g., apples) and or-
ange vegetables with indole-3-propionate and tetradecanedioate;
citrus, melons, and berries with tetradecandedioate and proline
betaine. The metabolite clustering of ceramides, sphingomyelin,

and plasmalogens is inversely associated with most of the PD
food groups. The hierarchical clustering of the metabolites
in the food-metabolite heatmaps mirrors the clustering of the
metabolites for the overlapping metabolites for WD and PD
(Figure 3).

In BMI-stratified analyses (Supplemental Tables 19–26)
(BMI <25 and ≥25) of the 86 replicated metabolites, we
replicated 53 for WD for both BMI strata (Supplemental Table
23) and 72 for PD for both BMI strata (Supplemental Table
26). Plasmalogens and carnitines were the largest classes of
metabolites positively associated with WD in both BMI strata
(Supplemental Table 22). TAGs with >6 double bonds were
the largest class of metabolites positively associated with PD
in both BMI strata (Supplemental Table 26). In sensitivity
analyses, additional adjustment for multivitamin use in the fully
adjusted model did not alter the number of selected metabolites;
thiamine and 4-pyridoxate remained as significant metabolites.
A sensitivity analysis was completed in the groups with and
without the development of CAD in both the Discovery and the
Replication groups. Major findings were unchanged.

Discussion
Adherence to a WD is a modifiable risk factor associated

with cancer (28) and CAD (29), chronic diseases that share
metabolic pathways of lipid dysregulation (30), oxidative stress,
and inflammation (31, 32). In the WHI, we identified distinct
metabolite signatures associated with the WD and PD, high-
lighting the differences in food compositions of these dietary
patterns and their associations with distinct metabolites. MSEA
identified the AC and PE plasmalogen metabolic pathways as
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TABLE 4 Overlapping validated metabolites for WD and PD in fully adjusted models in the WHI-HT1

WD PD

Metabolite HMDB ID

Western regression
coefficient, βWD

continuous 1 SD
(SE) P, continuous

FDR P,
continuous

Prudent regression
coefficient, βPD

continuous 1 SD
(SE) P, continuous

FDR P,
continuous

C14:0 CE HMDB06725 − 0.52 (0.07) 1.11 × 10−10 6.48 × 10−9 0.07 (0.03) 0.02 0.03
C16:1 CE HMDB00658 − 0.53 (0.07) 7.47 × 10−11 6.48 × 10−9 0.07 (0.03) 0.02 0.03
C20:5 CE HMDB06731 − 0.45 (0.07) 3.09 × 10−8 1.20 × 10−6 0.17 (0.03) 2.53 × 10−8 9.85 × 10−7

C36:5 PC HMDB07890 − 0.43 (0.07) 9.08 × 10−8 2.35 × 10−6 0.14 (0.03) 8.83 × 10−6 4.92 × 10−5

Docosatrienoic acid HMDB02823 0.44 (0.08) 1.00 × 10−7 2.35 × 10−6 − 0.12 (0.03) 0.0001 0.0005
Eicosapentaenoate HMDB01999 − 0.43 (0.07) 1.86 × 10−7 3.64 × 10−6 0.16 (0.03) 2.98 × 10−7 3.19 × 10−6

Tetradecanedioate HMDB00872 − 0.41 (0.07) 2.52 × 10−7 4.22 × 10−6 0.13 (0.03) 3.81 × 10−5 0.0002
C34:0 PS HMDB12356 − 0.42 (0.07) 4.19 × 10−7 6.13 × 10−6 0.14 (0.03) 1.27 × 10−5 6.57 × 10−5

Proline betaine HMDB04827 − 0.40 (0.07) 1.02 × 10−6 1.22 × 10−5 0.08 (0.03) 0.008 0.02
C22:6 LPC HMDB10404 − 0.38 (0.07) 2.08 × 10−6 2.21 × 10−5 0.18 (0.03) 7.88 × 10−9 7.02 × 10−7

C40:10 PC HMDB08511 − 0.38 (0.07) 2.51 × 10−6 2.45 × 10−5 0.16 (0.03) 2.05 × 10−7 2.66 × 10−6

C38:6 PC HMDB07991 − 0.37 (0.07) 4.14 × 10−6 3.62 × 10−5 0.18 (0.03) 1.20 × 10−8 7.02 × 10−7

DHA DHA − 0.38 (0.07) 4.33 × 10−6 3.62 × 10−5 0.14 (0.03) 4.77 × 10−6 2.94 × 10−5

C32:1 PC plasmalogen-A HMDB13404 − 0.36 (0.07) 1.09 × 10−5 8.50 × 10−5 0.08 (0.03) 0.01 0.03
C4-OH carnitine HMDB13127 0.34 (0.07) 1.60 × 10−5 0.0001 − 0.11 (0.03) 0.0003 0.001
Eicosanedioate NA 0.35 (0.08) 2.13 × 10−5 0.0001 − 0.11 (0.03) 0.0006 0.002
C36:4 PE plasmalogen HMDB11442 0.35 (0.08) 3.10 × 10−5 0.0002 − 0.09 (0.03) 0.004 0.01
C20:3 CE HMDB06736 − 0.33 (0.08) 5.03 × 10−5 0.0003 0.10 (0.03) 0.002 0.006
C18:2 SM NA 0.34 (0.08) 5.05 × 10−5 0.0003 − 0.09 (0.03) 0.007 0.01
C22:6 LPE-B HMDB11526 − 0.32 (0.07) 6.95 × 10−5 0.0003 0.15 (0.03) 7.95 × 10−7 6.65 × 10−6

C40:6 PC-B HMDB08057 − 0.32 (0.07) 8.46 × 10−5 0.0004 0.15 (0.03) 1.25 × 10−6 9.16 × 10−6

C34:2 PC plasmalogen-A HMDB11210 0.32 (0.08) 0.0001 0.0006 − 0.09 (0.03) 0.005 0.01
Pantothenate Pantothenate − 0.30 (0.08) 0.0002 0.001 0.12 (0.03) 0.0003 0.001
C36:3 PE plasmalogen HMDB11441 0.30 (0.08) 0.0004 0.001 − 0.08 (0.03) 0.01 0.03
4-Pyridoxate 4-Pyridoxate − 0.29 (0.08) 0.0005 0.002 0.13 (0.03) 4.24 × 10−5 0.0002
C22:6 CE HMDB06733 − 0.27 (0.07) 0.0005 0.002 0.15 (0.03) 1.53 × 10−7 2.24 × 10−6

C58:8 TAG HMDB05413 − 0.28 (0.07) 0.0006 0.002 0.17 (0.03) 8.48 × 10−8 1.98 × 10−6

C22:6 LPE-A HMDB11526 − 0.28 (0.08) 0.0006 0.002 0.14 (0.03) 2.10 × 10−5 0.0001
C36:2 PE plasmalogen HMDB09082 0.28 (0.08) 0.0009 0.003 − 0.10 (0.03) 0.002 0.004
Uridine Uridine − 0.28 (0.08) 0.001 0.003 0.17 (0.03) 8.42 × 10−8 1.98 × 10−6

C16:0 LPE HMDB11503 − 0.26 (0.07) 0.001 0.004 0.09 (0.03) 0.003 0.008
C60:12 TAG HMDB05478 − 0.26 (0.07) 0.001 0.004 0.16 (0.03) 1.13 × 10−7 2.20 × 10−6

C36:3 PC plasmalogen-A HMDB11244 0.27 (0.08) 0.002 0.004 − 0.09 (0.03) 0.005 0.01
C36:2 PC plasmalogen-A HMDB11243 0.26 (0.08) 0.002 0.005 − 0.09 (0.03) 0.003 0.008
C34:5 PC HMDB07885 − 0.24 (0.07) 0.003 0.007 0.09 (0.03) 0.006 0.01
Thiamin HMDB00235 − 0.23 (0.08) 0.006 0.02 0.10 (0.03) 0.001 0.004
C24:1 SM HMDB12107 − 0.22 (0.07) 0.006 0.02 0.13 (0.03) 2.43 × 10−5 0.0001
C38:4 PC plasmalogen-B HMDB11252 0.22 (0.08) 0.007 0.02 − 0.10 (0.03) 0.003 0.007
2-Aminooctanoate HMDB00991 0.22 (0.08) 0.007 0.02 − 0.09 (0.03) 0.005 0.01
C22:0 Ceramide (d18:1) HMDB04952 0.22 (0.08) 0.009 0.02 − 0.11 (0.03) 0.0006 0.002
Indole-3-propionate Indole-3-propionate − 0.21 (0.07) 0.01 0.02 0.15 (0.03) 1.05 × 10−6 8.22 × 10−6

C6 carnitine HMDB00705 0.20 (0.07) 0.01 0.03 − 0.08 (0.03) 0.01 0.02
C58:11 TAG HMDB10531 − 0.20 (0.08) 0.02 0.03 0.16 (0.03) 3.00 × 10−7 3.19 × 10−6

Uracil Uracil − 0.20 (0.08) 0.02 0.04 0.16 (0.03) 3.34 × 10−7 3.26 × 10−6

N-acetylornithine HMDB03357 − 0.18 (0.07) 0.02 0.049 0.08 (0.03) 0.01 0.02

1Adjusted for age, BMI, batch, ethnicity, enrollment time, energy intake, exercise, case-control status, smoking (current vs. past/never), income
(<$34,999 vs. ≥$34,999), education, and medication use at baseline (aspirin, statin, hypertension medications, diabetes medications). CE, cholesteryl ester;
FDR, false discovery rate; HMDB, Human Metabolome Database; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; NA, not available;
PC, phosphatidylcholine; PD, Prudent dietary pattern; PE, phosphatidylethanolamine; PS, phosphatidylserine; SM, sphingomyelin; TAG, triacylglycerol;
WD, Western dietary pattern; WHI-HT, Women’s Health Initiative Hormone Therapy Trial.

positively associated with the WD and the TAG metabolic
pathway metabolites as positively associated with PD. To our
knowledge, this is the first study to identify an association of
PE plasmalogens with WD. Several PE plasmalogens and C38:4

PC plasmalogen-B were correlated with red meat and saturated
fat intake. Plasmalogens have been identified as markers of
oxidative stress (33), and the association of PE plasmalogens
with WD may identify 1 deleterious pathway of WD for cancer
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FIGURE 3 Correlation matrix for overlapping metabolites with opposite direction B-coefficients for WD versus PD. CE, cholesteryl ester; LPC,
lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PD, Prudent dietary pattern; PE, phosphatidylethanolamine; SM,
sphingomyelin; TAG, triacylglycerol; WD, Western dietary pattern.

and ischemic heart disease. Some plasmalogens may represent an
appropriate response against increased oxidative stress generated
by overnutrition or proinflammatory foods (34). Antioxidant
effects associated with plasmalogens have been observed mainly
in in vitro models (35, 36) and in animal experiments (37,
38). Yet, the effects of specific plasmalogens with different
chemical structure are not fully understood (39). In 1 study, 91
plasmalogens were measured in plasma and found to be either
positively or inversely associated with aging (40). Given the iden-
tification of 2 plasmalogen compounds (C38:4 PC plasmalogen-
B and C32:1 PC plasmalogen A) that were not correlated
with the other 2 clusters of highly correlated plasmalogens, it

would be reasonable to expect different functions from these
plasmalogens.

CEs were negatively enriched for WD in MSEA. Additionally,
the CEs such as cholesteryl palmitoleate (C16:1 CE) and C14:0
CE were inversely correlated with unsaturated oil and inversely
associated with WD; these results are in agreement with prior
research that showed these CEs to be inversely associated with
a high-insulinemic dietary pattern (41), such as a WD (42).
Furthermore, the accumulation of CEs in the arterial intima
is an important feature of atherosclerosis (43). C16:1 CE is
a key plasma CE involved in reverse cholesterol transport.
Upregulation of reverse cholesterol transport, a process by which
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FIGURE 4 Hierarchical clustering heatmap of partial correlation coefficients for overlapping WD and PD metabolites and Western food groups. Partial
correlation was adjusted for age, BMI, batch, ethnicity, enrollment time, energy intake, exercise, case-control status, smoking (current vs. past/never), income
(<$34,999 vs. ≥$34,999), education, and medication use at baseline (aspirin, statin, hypertension medications, diabetes medications). CE, cholesteryl ester;
LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PD, Prudent dietary pattern; PE, phosphatidylethanolamine; PS,
phosphatidylserine; SM, sphingomyelin; TAG, triacylglycerol; WD, Western dietary pattern.

the body removes excess cholesterol from peripheral tissues and
takes them to the liver, has been documented with a Western-
style, high-saturated-fat diet in animals (44) and individuals (45).
We observed the expected strong positive correlation between
fatty fish intake with EPA and DHA metabolites, and positive
associations of EPA and DHA with PD and corresponding inverse
association with WD.

The metabolite patterns that we found may represent digested
food, such as lipids, or pathophysiology, such as oxidative stress
and lipid dysregulation, or both. The specific metabolite profile
of each dietary score was related to the dietary components used
to create the score, by design. The WD was typified by a high
contribution of saturated fats from animal products and the PD
was typified by a high contribution of vegetables (especially
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FIGURE 5 Hierarchical clustering heatmap of partial correlation coefficients for overlapping WD and PD metabolites and Prudent food groups. Partial
correlation was adjusted for age, BMI, batch, ethnicity, enrollment time, energy intake, exercise, case-control status, smoking (current vs. past/never), income
(<$34,999 vs. ≥$34,999), education, and medication use at baseline (aspirin, statin, hypertension medications, diabetes medications). CE, cholesteryl ester;
LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; PC, phosphatidylcholine; PD, Prudent dietary pattern; PE, phosphatidylethanolamine; PS,
phosphatidylserine; SM, sphingomyelin; TAG, triacylglycerol; WD, Western dietary pattern.

dark-green and orange vegetables) and fruits, foods characterized
as having anti-inflammatory and antioxidant properties. In BMI-
stratified analyses, the metabolite patterns remained of PE
plasmalogens associated with WD and CE and PCs associated
with PD.

Based on multiple functional concepts and food components
with anti-inflammatory activity, profiling of individual lipid
species offers further scope for understanding the complex-
ity and dynamics of lipids and oxidative stress in relation
to the influence of the WD or PD. Previous studies have

shown that changes in diet produce short-term changes in the
metabolome (46–49). A healthy dietary intervention demon-
strated reduction in plasmalogens among healthy participants
(50). Low-grade inflammation and oxidative stress are key
features of vascular and metabolic diseases. Eicosanoids are
inflammatory mediators that are synthesized in macrophages
from arachidonic acid and other lipids (51). It has been
speculated that increased synthesis of PE plasmalogens serve as
a reservoir for arachidonic acid and may contribute to increased
synthesis of proinflammatory eicosanoids (52). We found the PE
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plasmalogens were positively associated with a WD, independent
of BMI.

The benefits of higher fruit and vegetable intake for reducing
the risk of cancer and CAD (4) may be associated with oxidative
stress pathways. Our results suggest that metabolites such as
indole-3-propionate (a gut microbiota metabolite) and proline
betaine are associated with fruit and vegetable intake. Elevated
concentrations of proline betaine in human urine are found
after the consumption of citrus fruits and juices (53). One
study reported that each portion increase in the consumption
of fruits and vegetables was associated with a 4% lower risk
of dying from ischemic heart disease, even after adjusting for
other dietary factors (4). Yet, randomized controlled trials have
shown that increased consumption of fruits and vegetables has a
minimal impact on routine clinical plasma cholesterol fractions
(54), even though a higher intake of fruits and vegetables
has been associated with lower concentrations of plasma LDL
cholesterol in observational studies (55). Other mechanisms
represented by diet-related metabolites may represent causal
pathways for ischemic heart disease beyond traditional lipids.
Indole-3-propionate (56) and betaine (57) have been shown
to alter oxidative stress, and betaine may protect cells from
mitochondrial dysfunction (58).

The metabolome is closely linked to both weight and BMI, and
dietary-associated metabolites may overlap with BMI-associated
metabolites (59). We tried to minimize this impact through our
BMI-stratified analyses. The FA characteristics in the human
body reflect not only the dietary fat composition but also the
endogenous production and metabolism of FAs (60) related
to obesity and lifestyle variables (61). A profound feature of
inflammatory diseases is the excessive recruitment and influx
of monocytes to sites of tissue damage and their subsequent
differentiation into macrophages (62). Higher consumption of the
WD is associated with markers of macrophage activation (63).

This study’s strengths include the large population size,
detailed dietary data, and large number of measured metabolites.
Our data replicated and validated metabolites from previous
targeted biomarker studies (11). The primary dietary assessment
instrument is the validated WHI FFQ (20). The questionnaire
includes questions on fat-related food-preparation methods and
reduced-fat foods to increase its sensitivity to dietary fat intake.
Methodological limitations include measurement error for self-
reported dietary measurements, because this relies on the women
accurately reporting what they ate and estimating the fat content
in the food. Estimated prevalence of misreporting is 30–88% with
these tools (64), with underreporting biased towards unhealthy
foods and overreporting biased towards fruits and vegetables
(65). Our study is limited in its focus on a single baseline serum
sample with self-reported diet.

This study comprised primarily white postmenopausal women
and the results may not be generalizable to other populations. We
cannot provide information about actual concentrations, because
metabolites were measured as peak intensities rather than as
absolute concentrations. Variability in serum metabolites may be
greatly influenced by the gut microbiota and we do not have data
on the gut microbiome in this study.

In conclusion, the WD and PD were significantly associated
with several metabolites. Metabolomic profiling, an emerging
technology in application to nutritional epidemiology, may offer
insights into the biological mechanisms linking dietary patterns

with oxidative stress and lipid dysregulation as underlying
mechanisms for CAD and cancer.
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