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tic resonance imaging
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positive breast cancer
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Abstract
To examine the correlation of qualitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)
results with 95-gene classifier or CurebestTM 95-gene classifier Breast (95GC) results for recurrence prediction in estrogen receptor-
positive breast cancer (ERPBC).
This retrospective study included 78 ERPBC patients (age range, 24–74 years) classified into high- (n=33) and low- (n=45) risk

groups for recurrence based on 95GC and who underwent DCE-MRI between July 2006 and November 2012. For qualitative
evaluation, mass shape, margin, and internal enhancement based on BI-RADS MRI lexicon and multiplicity were determined by
consensus interpretation by 2 breast radiologists. For quantitative evaluation, mass size, volume ratios of the DCE-MRI kinetics, and
both the kurtosis and the skewness of the intensity histogram for the whole mass in the initial and delayed phases were determined.
Differences between the 2 risk-groups were analyzed using univariate logistic regression analyses and multiple logistic regression
analyses. Receiver-operating characteristic curve cut-off values were used to define the groups.
As for the qualitative findings, the difference between the 2 groups was not significant. For the quantitative data, the volume ratio of

“medium” in the initial phase differed significantly between the 2 groups (P= .049). The volume ratio of “medium” (P= .006) and of
“slow-persistent” (P= .005), and the delayed phase kurtosis (P= .012) in the univariate logistic regression analyses, and in themultiple
logistic regression, volume ratio of “medium” >38.9% and delayed phase kurtosis >3.31 were identified as significant high-risk
indicators (odds ratio, 5.83 and 3.55; 95% confidence interval, 1.58 to 21.42 and 1.24 to 10.15; P= .008 and P= .018, respectively).
A high volume ratio of “medium” in the initial phase and/or high kurtosis in the delayed phase for quantitative evaluation could

predict high ERPBC recurrence risk based on 95GC.

Abbreviations: 95GC = 95-gene classifier or CurebestTM 95-gene classifier breast, DCE-MRI = dynamic contrast-enhanced
magnetic resonance imaging, ER = estrogen receptor, ERPBC = estrogen receptor-positive breast cancer, GC = gene classifier,
MLR = multiple logistic regression analyses, NAC = neoadjuvant chemotherapy, ODX = Oncotype DX, RS = recurrence score,
ULR = univariate logistic regression analyses.
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1. Introduction
Figure 1. Schematic diagram illustrating patient selection. One hundred
twenty-four consecutive female ERPBC patients who were divided into high-
and low-recurrence risk groups as predicted by 95GC, recruited. Among them,
81 patients underwent breast MRI examination, and 3 cases were excluded
due to the absence of contrast-enhanced dynamic sequences. Thus, the final
study data set included 78 patients (45 low-risk and 33 high-risk patients).
95GC=CurebestTM 95-gene classifier breast; ERPBC=estrogen receptor-
positive breast cancer, MRI=magnetic resonance imaging.
Estrogen receptor (ER) positive early-stage breast cancer patients
can be treated with hormonal therapy alone after surgery, which
would limit toxicity from unnecessary chemotherapy.[1,2] Recent
breast cancer-related studies have shown that the results of a
multi gene expression profiling assay are associated with the
prognosis and response to chemotherapies of these cancers.[3–6]

Some multi-gene classifiers (GCs), including Oncotype DX
(ODX, Genomic Health, Redwood City, CA), yield a so-called
recurrence score (RS), which has been shown to be prognostic in
early-stage ER-positive/human epidermal growth factor receptor
2 negative invasive breast cancer. This assay is available in the
clinical setting for prediction of recurrence after breast cancer
surgery.[3,4]

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) has excellent sensitivity and moderate specificity
for assessment of breast cancer and is widely used,[7–15] and some
investigators have compared the DCE-MRI enhancement
characteristics with the predicted breast cancer recurrence risk
based on a multi-GC.[16–25] Saha et al conducted a study to
evaluate imaging features from DCE-MRI in breast cancer
patients to predict the distant recurrence risk using ODX scores,
and found a moderate association between imaging features and
ODX scores.[23]

For predicting recurrence of ER-positive and node-negative
breast cancer, CurebestTM 95-GC or CurebestTM 95-GC Breast
(95GC, Sysmex Corporation Co., Ltd, Kobe, Japan) was
developed, using the Affymetrix DNA microarray on breast
cancer specimens.[5] 95GC can divide ER-positive and node-
negative breast cancer patients into low- and high- recurrence risk
groups. It is speculated that the patients classified into the low-
risk group with this classifier could safely avoid undergoing
adjuvant chemotherapy,[5] and the high-risk patients show a
higher sensitivity to chemotherapy and thus, are likely to benefit
more from adjuvant chemotherapy.[5,25] It has reported that the
pathological complete response rate after neoadjuvant chemo-
therapy (NAC) for high-risk patients divided by 95 GC was
significantly higher than for low-risk patients.[26] 95GC may be
advantageous over ODX because it permits physicians to
determine appropriate adjuvant therapy for patients falling in
the gray zone by ODX, that is, intermediate-risk patients, in a
clinical setting.[27–29] To date, there have been no reports on the
relationship between the data from DCE-MRI and recurrence
risk prediction based on 95GC.
We hypothesized that DCE-MRI data might show an

association with recurrence risk as defined by the 95GC results
and that integration of DCE-MRI and genomic risk information
would offer enhanced predictive power. To this end, we
retrospectively examined the correlation of qualitative and
quantitative DCE-MRI data with 95GC results for prognostic
prediction in ER-positive breast cancer (ERPBC). Although it is
different from the original target of 95GC, a more advanced
cohort of NAC cases was used to better capture the mass
characteristics extracted by MRI.

2. Materials and methods

2.1. Study population

The study was approved by the institutional review board, and
the requirement for obtaining informed consent was waived. For
our analysis, we identified 124 consecutive female ERPBC
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patients who were divided into high- and low-recurrence risk as
predicted by 95GC, and who underwent NAC. Among them, 81
patients underwent breast MRI examination, and 3 cases were
excluded due to the absence of contrast-enhanced dynamic
sequences. Thus, the final study data set included 78 patients (age
range, 24–74 years), who were divided into high- and low-
recurrence risk groups as predicted by 95GC and underwent
DCE-MRI at our hospital between July 2006 and November
2012 (Fig. 1); they all underwent breast conserving surgery or
mastectomy after NAC. Before NAC, the histopathological
examination and gene expression analysis was conducted from
biopsy specimens with a vacuum-assisted core-biopsy instrument
(Mammotome 8G HH: Ethicon Endosurgery Inc., Cincinnati,
OH) under ultrasonographic guidance. Tumor samples for
histopathologic examination were fixed in 10% buffered
formaldehyde, and tumor samples for gene expression analysis
were snap frozen in liquid nitrogen and stored at -80°C until use.
The histopathological diagnoses in our institutional database
were confirmed as shown in Table 1.

2.2. MR protocols

All images were acquired by using a 1.5-T unit (Signa EXCITE
HD EchoSpeed Plus; GEMedical Systems, Milwaukee, WI) using
a 4-channel breast-array coil. Dynamic sequences were per-
formed, including 1 precontrast- and 4 postcontrast-enhanced
volume imaging series at intervals of 94s/phase. Thereafter,
gadopentetate dimeglumine (Magnevist; Bayer, Osaka, Japan)
was administered intravenously by means of power injection at a
dose of 0.1 mmol per kg of body weight at a flow rate of 2mL/s
followed by 20mL saline. K-space was the mean of the sequential
view order (linear view order) scan time.
Dynamic images were acquired with the volume imaged breast

assessment T1-weighted fat-saturated gradient-echo sequences
were acquired using the following parameters for the sagittal
bilateral protocol: repetition time,<6.3ms; TE, <3.1 ms. In-
phase resolution ranged from 0.78 to 1.25mm, with 0-mm
spacing between sections (gapless); flip angle was 10°, with a
2-mm or smaller spatial resolution in the slice direction. Other



Table 1

Distribution of cases in the database in each Curebest 95 GC risk
group.

Low risk (n=45) High risk (n=33)

Age, yr 57±13.34 48±9.65

ER positive 45 33
ER negative 0 0
PgR positive 37 21
PgR negative 8 12
HER2 positive 7 8
HER2 negative 38 25
T1 5 1
T2 32 27
T3 4 4
T4 4 1
N positive 30 25
N negaive 15 8
HG

∗
1 14 4

HG2 26 19
HG3 5 10
IDC† 33 30
IDC,MUC‡ 2 0
IDC,ILCx 0 1
ILC 7 1
MUC 2 1
TC¶ 1 0

Age; mean ± standard deviation.(yr).
95GC = CurebestTM 95-gene classifier breast, ER = estrogen receptor, HER2 = human epidermal
growth factor receptor, IDC = Invasive ductal carcinoma, ILC = Invasive lobular carcinoma, MUC =
Mucinous carcinoma, PgR = Progesteron receptor, TC = Tubular carcinoma.
∗
Histological grade.

† Invasive ductal carcinoma.
‡Mucinous carcinoma.
x Invasive lobular carcinoma.
¶ Tubular carcinoma.
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parameters were: field of view, 20 to 22cm; acquisition matrix,
256�160.
2.3. Qualitative evaluation

When the tumor was a single mass in the affected breast, it was
determined as the indexed mass. When the tumors had a
multifocal or multicentric mass distribution, the largest mass,
histopathologically diagnosed as breast cancer and classified by
95GC, was determined as the indexed mass. The indexed masses
were recognized consistently by 2 breast radiologists (YT and
KM) with 16 and 14 years of experience, respectively. When the
independent interpretations made by the radiologists based on
BI-RADS MRI2nd[30] were not same, the findings were deter-
mined by consensus without knowledge of any clinical,
pathological, and genetic information.
2.4. Quantitative evaluation

The maximal length of the index mass was measured by using the
ruler in the size measurement tool of SYNAPSE (FUJIFILM
Medical Co, Ltd., Tokyo, Japan) independently by the 2 breast
radiologists without knowledge of any clinical, pathological, and
genetic information, and the average was used in the analysis.
The volume of the index mass was extracted manually by a

breast radiologist (YT) without knowledge of any clinical,
3

pathological, and genetic information, using SYNAPSE VIN-
CENT version 4.4 (FUJIFILMMedical Co, Ltd.), a commercially
available 3D imaging diagnosis workstation, followed by volume
measurement of the indexedmass and calculation of the skewness
and kurtosis of the 3D volume mass intensity histogram in both
initial and delayed phases, which were performed automatically
following the method reported by Sutton et al.[31]

Kinetic curve assessment was conducted using DynaCAD,
version 2.1.8 (Invivo, Pewaukee, WI), a commercially available
computer-aided evaluation system, which allows automatic
analysis of 3-phase series into kinetic data. The volume ratio
of each combination of the initial phase (slow, medium, and fast)
and the delayed phase (persistent, plateau, and washout) was
automatically calculated after segmenting the index tumor in 3D
voxels by a breast radiologist (YT) based on the specifications of
DynaCAD for quantitative analysis.
2.5. Recurrence risk groups with multigene assays

95GC was developed and is commercially available in Japan and
Korea. It is specified in the Japanese Breast Cancer Medical Care
Guideline 2015[32] and involves the expression of 95 genes of the
primary tumors. It can be used to distinguish 2 breast cancer
recurrence risk groups: low-risk and high-risk groups. RNA was
extracted from the biopsy samples and was subjected to gene
expression analysis using a DNA microarray. Gene analysis was
conducted to divide the biopsy samples to high- and low-
recurrence risk groups, as has been reported previously.[5]
2.6. Statistical analysis

Differences in the quantitative DCE-MRI data between the high-
and low-risk groups of 95GC were analyzed using the Mann-
Whitney test. For each quantitative parameter, the cutoff value
that yielded the maximum difference between the high- and low-
risk groups of 95GC was determined using the Youden index of
receiver operating characteristic method. The value of qualitative
and quantitative parameters for examining associations with risk
was analyzed using univariate logistic regression analyses (ULR).
Parameters showing significance in the ULR were included in the
multiple logistic regression (MLR) analysis. These analyses were
conducted usingMedCalc (Med Calc statistical software, ver. 16,
Mariakerke, Belgium). A P value of .05 was used as the
significance level.
3. Results

3.1. Difference in qualitative parameters between the
high-risk and low-risk groups

The qualitative parameters such as mass shape, margin, and
internal enhancement based on BI-RADS MRI2nd were not
significant between the high-risk and low-risk groups (P= .98,
.98, and .37, respectively).
3.2. Difference in mass size between the high-risk and
low-risk groups

The maximal length of the mass (mean ± SD: high-risk group,
33mm ± 10.9: low-risk group, 31mm ± 13.2) was not
significantly different between the high-risk and low-risk
groups (P=0.224).
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Table 2

Difference in kinetic volume ratio between high-risk group and
low-risk group.

High-risk group
∗

(n=33)
Low-risk group

∗

(n=45) P- value

Fast total 25.7±14.4 26.2±2.6 .855
Fast-persistent 8.2±7.3 7.6±5.8 .899
Fast-plateau 9.6±4.8 9.1±5.5 .689
Fast-washout 8.1±5.7 9.4±7.0 .517
Medium total 34.7±9.3 30.7±7.1 .049†

Medium-persistent 19.2±6.8 17.3±6.0 .195
Medium-plateau 7.6±3.3 6.4±2.9 .186
Medium-washout 7.8±5.2 6.8±4.2 .585
Slow total 39.4±16.4 42.9±16.6 .392
Slow-persistent 28.3±10.4 31.7±12.5 .384
Slow-plateau 3.4±1.8 3.5±1.8 .796
Slow-washout 7.6±6.6 7.7±5.2 .660
Persistent total 55.8±8.0 56.6±10.3 .883
Plateau total 20.4±3.7 19.2±5.0 .384
Washout total 23.7±8.7 24.0±10.4 .927
∗
Data are mean ± standard deviation.

† There were significant differences in the volume ratio of “medium” in the initial phase between the
high- and low-risk groups.
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3.3. Difference in kinetic volume ratio between the high-
risk and low-risk groups

There were significant differences in the volume ratio of
“medium” in the initial phase between the high- and low-risk
groups (P= .049) (Table 2). ULR analysis revealed that a high
“medium” volume ratio in the initial phase was associated with
the high-risk group (P= .005; odds ratio, 5.85; 95% confidence
interval, 1.68–20.40) and the volume ratio of “slow-persistent”
was associated with the low-risk group (P= .041; odds ratio,
4.06; 95% confidence interval, 1.05–15.68). MLR analysis
Table 3

Difference of logistic regression analysis in kinetic volume ratio betw

ULR†

Odds ratio 95%

Fast total �29.3, n=50; >29.3, n=28 0.94 0.74 to
Fast-persistent >12.1, n=14; �12.1, n=64 0.48 0.13 to
Fast-plateau > 4.9, n=50; �4.9, n=28 0.96 0.37 to
Fast-washout � 11.5, n=65; >11.5, n=13 0.57 0.17 to
Medium total > 38.9, n=16; �38.9, n=62 5.85 1.68 to
Medium-persistent >16.1, n=46; �16.1, n=32 2.20 0.85 to
Medium-plateau > 5.2, n=53; � 5.2, n=25 2.47 0.88 to
Medium-washout > 9.3, n=21; �9.3, n=57 1.75 0.63 to
Slow total �55.3, n=63; >55.3, n=15 3.63 0.93 to
Slow-persistent �38.9, n=62; >38.9, n=16 4.06 1.05 to
Slow-plateau � 3.6, n=45; >3.6, n=33 0.64 0.25 to
Slow-washout � 8.9, n=52; > 8.9, n=26 2.08 0.77 to
Persistent total � 50.7, n=25; >50.7, n=53 2.27 0.86 to
Plateau total >21.8, n=24; �21.8, n=54 2.57 0.96 to
Washout total >18.0, n=56; �18.0, n=22 0.50 0.18 to

Univariate logistic regression analysis revealed that a high “medium” volume ratio
∗
was associated with the h

logistic regression analysis revealed that the medium volume ratio‡ >38.9% was a significant indicato
CI = confidence interval, MLR = multiple logistic regression analyses, ULR= univariate logistic regress
∗
confidence interval.

† univariate logistic regression.
‡multiple logistic regression.
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revealed that the “medium” volume ratio >38.9% was a
significant indicator of high-recurrence risk based on 95GC
(P= .008; odds ratio, 5.82; 95% confidence interval, 1.58–21.42)
(Table 3) (Figs. 2 and 3). The other volume ratios were not
significant.
3.4. Difference in skewness and kurtosis between the
high-risk and low-risk groups

Kurtosis in the delayed phase was found to be a significant
indicator of high recurrence risk (P= .0116; odds ratio, 3.5714;
95% confidence interval, 1.33–9.60) in the ULR analysis. MLR
analysis revealed that a kurtosis value>3.31 in the delayed phase
was a significant indicator of the high recurrence risk based on
95GC (P= .018; odds ratio, 3.55; 95% confidence interval, 1.24–
10.15) (Table 4) (Figs. 2 and 3).
4. Discussion

In the present study, we investigated the correlation of qualitative
and quantitative DCE-MRI data with a low or high risk of
recurrence of ERPBC as determined by 95GC. Multivariate
analysis revealed that a “medium” volume ratio >38.9% was a
significant indicator of high risk of recurrence based on 95GC
(P= .008; OR5.82; 95%CI1.58–21.42) and that a kurtosis value
>3.31 in the delayed phase was a significant indicator of high risk
of recurrence based 95GC (P= .018; OR3.55; 95%CI 1.24–
10.15) despite no significant between-group difference in the
qualitative data.
There have been several correlational studies of breast imaging

and molecular subtypes, risk factors for a worse prognosis,
prediction of the pathologic complete response after NAC, and
treatment outcome.[33–39] Correlation of the radiogenomics
of breast cancer, that is, radiomics research with genomic
een high risk group and low risk group.

MLR‡

CI
∗

P Odds ratio 95%CI
∗

P

5.12 .176
1.70 .257
2.46 .941
1.89 .359
20.39 .005

∗
5.82 1.58 to 21.42 .008‡

5.65 .096
6.90 .074
4.79 .276
14.14 .062
15.68 .041†

1.60 .345
5.63 .148
6.00 .095
6.90 .059
1.35 .173

igh-risk group and a volume ratio of “slow-persistent”† was associated with the low-risk group. Multiple
r of high-recurrence risk.
ion analyses.



Figure 2. A case in the low-risk group of recurrence as predicted by 95GC. (A) Sagittal magnetic resonance image shows an irregularly shaped and spiculated
mass on dynamic contrast-enhanced magnetic resonance imaging and the 3D voxel extracted manually. Kurtosis in the delayed phase was 2.602 (< cut off value,
3.312). (B) DynaCAD shows that the “medium” rate to the whole tumor was 35.7% (< cut-off value, 38.9%). 95GC=CurebestTM 95-gene classifier breast.
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information, with ODX might be a representative topic. Several
research groups have identified MRI features that might be
associated with ODX RS.[21–24,37] However, even if there is a
correlation with imaging, decision-making regarding the treat-
ment plan may still not be possible because there is an
intermediate risk in ODX. However, 95GC can divide patients
with ER-positive and node-negative breast cancer into groups at
low and high risk of recurrence, so may have an advantage over
ODX in that it allows physicians to determine appropriate
adjuvant therapy for patients who fall in the gray zone by ODX,
that is, patients at intermediate risk, in a clinical setting.[27–29] If
MRI features can predict the results of 95GC, the decision as to
Figure 3. A case in the high-risk group for recurrence as predicted by 95GC. (A) Sa
dynamic contrast-enhanced magnetic resonance imaging and the voxel extracted
DynaCAD shows that the “medium” rate to the whole tumor was 44.3% (> cut-

5

whether or not chemotherapy should be used is more
straightforward because patients can be categorized according
to risk of recurrence. The accuracy of 95GC was reported by
Naoi et al.[5,25,26] In their study, they divided 459 patients with
ER-positive and node-negative breast cancer who were treated
with adjuvant hormonal therapy into a high-risk group (n=174)
and a low-risk group(n=285) and found that the recurrence-free
survival rate was significantly better in the low-risk group than in
the high-risk group (P=5.5e-10).[25]

First, we found a significant correlation in the volume ratio of
“medium” in the initial phase of the whole mass between the 2
groups. Based on BI-RADSMRI 2ndedition, all masses in this study
gittal magnetic resonance image shows a round mass with irregular margins on
manually. Kurtosis in the delayed phase was 3.345 (> cut-off value, 3.312). (B)
off value, 38.9%). 95GC=CurebestTM 95-gene classifier breast.

http://www.md-journal.com


Table 4

Difference in skewness and kurtosis between high-risk and low-risk groups.

Mann-Whitney test ULR† MLR‡

Mean+�SD P Odds ratio 95% CI
∗

P Odds ratio 95% CI
∗

P

Initial phase kurtosis 4.0±0.6 .879 1.53 0.61–3.84 .36
Initial phase skewness �0.5±0.3 .514 2.9 0.9–10.1 .08
Delayed phase kurtosis 3.4±0.8 .040 3.57 1.32–9.59 .011 3.6 1.2–10.1 .002

∗∗

Delayed phase skewness �0.63±0.4 .307 1.94E+009 – .99

Multiple logistic regression analysis revealed that a kurtosis value >3.31 in the delayed phase
∗∗

was a significant indicator of high recurrence risk.
CI = confidence interval.
∗
confidence interval.

† univariate logistic regression.
‡multiple logistic regression.
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were divided to “washout” kinetics; 97% (76/78) of masses
showed a “fast-washout” kinetics. Several researchers have
studied the relationships between DCE-MRI features including
kinetic curve, enhancement texture, and enhancement variances.
Li et al[20] investigated the relationships between computer-
extracted breast MRI phenotypes and the results of clinically
available multigene assays for predicting the breast cancer
recurrence risk. They found that high risk of recurrence according
to the ODX correlated with the size, kinetic maximum
enhancement, and enhancement texture of tumors, and reported
that maximum contrast enhancement correlated with a high risk
of recurrence according to theODX. Ashraf et al[40] also analyzed
curve-based kinetic features to investigate their association and
showed their correlation with ODX. In this study, we used the
volume ratio of kinetic assessment and tumor 3D volumetric
histogram as quantitative data, and found that the “medium”

volume ratio of the whole mass in the initial phase was an
important factor in dividing patients into high-risk and low-risk
groups for the prediction of recurrence of ERPBC based on the
results of 95GC, rather than the presence of “washout” or “fast-
washout” pattern in the mass. A high “medium” volume ratio in
the whole mass in the initial phase correlated with high
recurrence risk prediction. Similar to our study that investigated
the volume ratio of signal enhancement, Saha et al. identified
features that best predicted the RS (high versus intermediate and
low RS) as follows: signal enhancement ratio-based washout
tumor volume, mean and variance of the wash-in slope of tumor
voxels, the proportion of maximally enhanced tumor voxels, and
that enhanced at a particular intensity level.[23] The volume ratio
of enhanced tumor voxels was an MRI feature that could be of
value for predicting the recurrence risk determined by multigene
assays. Our results showed that the value for predicting the
recurrence risk determined by the multigene assay could not
correlated with only vascularity in the maximally enhanced area
of the mass.
Second, in the present study, there was a significant difference

in kurtosis of the whole tumor 3D volumetric histogram in the
delayed phase between the 2 groups. High kurtosis in the delayed
phase significantly correlated with the high-risk group as defined
by 95GC. In the delayed phase, masses could show varying
intensity, including both decreasing intensity due to voxels with a
“washout” kinetics and increasing intensity due to voxels with a
“persistent” or “plateau” kinetics. The higher kurtosis in the
delayed phase could indicate that tumors include more voxels of
similar intensities around the average value within the mass in the
delayed phase, and tumors from the high-risk group are more
likely to include such voxels than those from the low-risk group.
6

Similarly, Sutton et al[31] investigated the correlations of
computer-extracted DCE MRI morphologic, histogram-based,
first-order texture features with the ODX RS. Their results
showed that kurtosis in the first and third postcontrast images
significantly correlated with the ODX RS. Li et al[20] also found
that tumors with a high risk of recurrence, based on ODX results,
correlated with the enhancement texture, according to the
maximum enhancing voxels within a lesion. Mazurowski et al[41]

investigated the association of distant recurrence-free survival
with MRI characteristics in breast cancer, and found the
strongest associations with distant recurrence-free survival were
signal enhancement ratio partial tumor volume, kurtosis of the
signal enhancement ratio map within tumor and the other
quantitative data. Assessment of heterogeneity, including
skewness and kurtosis, may be important for deciding treatment
options for breast cancer patients and for predicting recurrence
prognosis. However, this should be verified in further studies
with larger sample sizes.
Radiogenomic studies using a high number of features and a

machine learning approach have recently been reported.[23,24]

Our results are similar to those of Nam et al, who revealed that
quantitative parameters using intratumoral texture analysis were
significant between a low-risk group and non-low risk group;
they built prediction models for both ODX RS and clinicopath-
ologic factors that achieved an area under the curve of 0.9,
although there were no significant differences in qualitative
parameters based on the second edition of the BI-RADS between
the 2 groups.[24] Recently, RS of 95GC that correlated well with
recurrence rate was developed, and it was made available for
formalin-fixed paraffin-embedded tissue, besides fresh-frozen
tissue. That would make 95GC enhance clinical use.[6] This study
provides preliminary results for the correlation of DCE-MRIwith
95GC for prediction of recurrence in patients with ERPBC. We
are now planning a study in a larger sample of patients with ER-
positive and node-negative breast cancer that includes a
validation set and patient outcomes. In the future, it is expected
that a diagnostic algorithm that predicts recurrence prognosis
using a combination of a multigene classifier, clinicopathological
data, and MRI, with texture analysis and using artificial
intelligence will be developed.
This study had some limitations. First, only a small number of

cases were included in this retrospective study. Second, there was
bias in patient selection among ERPBC patients. Because our
objective was to discover a qualitative and a quantitative mass
characteristics extracted by MRI, more advanced cohort of NAC
cases were used. 95GC is a commercially available multigene
classifier model for recurrence prognosis prediction of ER-
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positive and node-negative breast cancer patients with high
accuracy. On the other hand, it has been demonstrated that high-
risk patients for recurrence based on 95GC show a higher
sensitivity to chemotherapy for ERPBC, including node-positive
patients treated by NAC.[25] Third, an investigation of the
correlation with patient outcome was not conducted with this
data set according to risk-stratification by 95GC because all
patients in this study had undergone NAC for advanced cancer,
although the recurrence prognosis correlation to stratification by
95GC has been confirmed in a previous study.[25–26] Fourth, no
validation set was evaluated because of the small number of cases.
In conclusion, a high volume ratio of “medium” in the initial

phase and/or high kurtosis in the delayed phase for quantitative
evaluation could predict high ERPBC recurrence risk based on
95GC.
Figure S1, http://links.lww.com/MD/E4.
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